Introduction to Darboux Integral

Published: 2024-05-17

Partition

Def 1: Let a<ba < b. A set P[a,b]P \subseteq [a,b] is a partition of [a,b][a,b] if PN|P| \in \mathbb{N}.

Refinement

Def 2: Let PP and PP' be partitions of [a,b][a,b], then PP' is refinement of PP if PPP \subseteq P'.

Lower Darboux Sum

Def 3: For a partition PP of [a,b][a,b] and P=n+1|P| = n + 1, the lower Darboux Sum of f:[a,b]Rf: [a,b] \to \mathbb{R} over PP, L(f,P)\mathcal{L}(f,P), is

i=1n(pi+1pi)infx(pi,pi+1)f(x)\sum^{n}_{i=1} (p_{i+1} - p_{i}) \inf_{x \in (p_{i},p_{i+1})} f(x)

where !pn P:p1p2pn+1\exists!p_{n} \in\ P: p_{1} \leq p_{2} \leq \dots \leq p_{n+1}.

Upper Darboux Sum

Def 4: For a partition PP of [a,b][a,b] and P=n+1|P| = n + 1, the upper Darboux Sum of f:[a,b]Rf: [a,b] \to \mathbb{R} over PP, U(f,P)\mathcal{U}(f,P), is

i=1n(pi+1pi)supx(pi,pi+1)f(x)\sum^{n}_{i=1} (p_{i+1} - p_{i}) \sup_{x \in (p_{i},p_{i+1})} f(x)

where !pnP:p1p2pn+1\exists!p_{n} \in P: p_{1} \leq p_{2} \leq \dots \leq p_{n+1}.

Refinement Inequality Theorem

Lemma 5: For an ordered set SS and its subset BSB \subseteq S, infBinfS\inf B \geq \inf S and supBsupS\sup B \leq \sup S.

Lemma 6: For f:[a,b]Rf:[a,b] \to R, given a partition PP of [a,b][a,b] and its refinement P=P{c}P' = P \cup \{ c \}, L(f,P)L(f,P)\mathcal{L}(f,P) \leq \mathcal{L}(f,P’) and U(f,P)U(f,P)\mathcal{U}(f,P) \geq \mathcal{U}(f,P').

Let pn1,pn,pn+1p_{n-1},p_{n},p_{n+1} where pn=cp_{n} = c, then

L(f,P)L(f,P)=(pn+1pn)infx(pn,pn+1)f(x)+(pnpn1)infx(pn1,pn)f(x)(pn+1pn1)infx(pn1,pn+1)f(x)\begin{align} \mathcal{L}(f,P') - \mathcal{L}(f,P) &= (p_{n+1} - p_{n}) \inf_{x \in (p_{n}, p_{n+1})} f(x) \\ &+ (p_{n} - p_{n-1}) \inf_{x \in (p_{n-1}, p_{n})} f(x) \\ &- (p_{n+1} - p_{n-1}) \inf_{x \in (p_{n-1}, p_{n+1})} f(x) \end{align}

For simplicity, we assume i0=infx(pn1,pn+1)f(x)i_{0} = \inf_{x \in (p_{n-1}, p_{n+1})} f(x), i1=infx(pn,pn+1)f(x)i_{1} = \inf_{x \in (p_{n}, p_{n+1})} f(x) and i2=infx(pn1,pn)f(x)i_{2} = \inf_{x \in (p_{n-1}, p_{n})} f(x), then

ΔL=(pn+1pn)i1+(pnpn1)i2(pn+1pn1)i0=pn+1i1pni1+pni2pn1i2pn+1i0+pn1i0=pn1(i0i2)+pn(i2i1)+pn+1(i1i0)\begin{align} \Delta \mathcal{L} &= (p_{n+1} - p_{n})i_{1} + (p_{n} - p_{n-1})i_{2} - (p_{n+1} - p_{n-1})i_{0} \\ &= p_{n+1}i_{1} - p_{n}i_{1} + p_{n}i_{2} - p_{n-1}i_{2} - p_{n+1}i_{0} + p_{n-1}i_{0} \\ &= p_{n-1}(i_{0}-i_{2}) + p_{n}(i_{2}-i_{1}) + p_{n+1}(i_{1}-i_{0}) \end{align}

Without the loss of generality, assume that i1=i0i_{1} = i_{0} (since (pn1,pn)(pn,pn+1)=(pn1,pn+1)(p_{n-1},p_{n}) \cup (p_{n},p_{n+1}) = (p_{n-1},p_{n+1}) implies that i0i_{0} is contained in one of those two intervals), then

ΔL=pn1(i0i2)+pn(i2i0)=(pnpn1)(i2i0)\begin{align} \Delta \mathcal{L} = p_{n-1} (i_{0} - i_{2}) + p_{n}(i_{2} - i_{0}) = (p_{n}-p_{n-1})(i_{2}-i_{0}) \end{align}

By Lemma 5, i2i00i_{2} -i_{0} \geq 0 and by definition pnpn1>0p_{n}-p_{n-1}> 0; therefore,

ΔL0    L(f,P)L(f,P)0    L(f,P)L(f,P).\Delta \mathcal{L} \geq 0 \implies \mathcal{L}(f,P') - \mathcal{L}(f,P) \geq 0 \implies \mathcal{L}(f,P') \geq \mathcal{L}(f,P). \square

Equivalently, it can be shown that U(f,P)U(f,P)\mathcal{U}(f,P') \leq \mathcal{U}(f,P).

Theorem 7: Let f:[a,b]Rf: [a,b] \to \mathbb{R} and PP be a partition of [a,b][a,b]. If PP' is a refinement of PP, then L(f,P)L(f,P)\mathcal{L}(f,P) \leq \mathcal{L}(f,P') and U(f,P)U(f,P)\mathcal{U}(f,P) \geq \mathcal{U}(f,P')

Theorem 7 can be proven by induction of lemma 6.

Upper-Lower Sum Comparison

Thm 8: Let f:[a,b]Rf: [a,b] \to \mathbb{R}, PP and PP' be arbitrary partitions of [a,b][a,b], then L(f,P)U(f,P)\mathcal{L}(f,P) \leq \mathcal{U}(f,P')

Let P=PPP'' = P \cup P', then P,PP,P' are refinements of PP'', so by Refinement Inequality Theorem,

L(f,P)L(f,P)U(f,P)U(f,P).\mathcal{L}(f,P) \leq \mathcal{L}(f,P'') \leq \mathcal{U}(f,P'') \leq \mathcal{U}(f, P). \square

[!Question]- Why is L(f,P)U(f,P)\mathcal{L}(f,P'') \leq \mathcal{U}(f,P''). Intuitively, since upper sum always overshoots and lower sum over undershoots the actual integral, upper sum will always be bigger or equal to the lower sum; however, if you want a rigorous proof, here it is:

For f:[a,b]Rf: [a,b] \to \mathbb{R} and Partition PP, we define

Δ=U(f,P)L(f,P),\Delta = \mathcal{U}(f,P) - \mathcal{L}(f,P),

which, by definition of upper and lower Darboux sums is equal to

Δ=i=1n(supx(pi,pi+1)f(x)supx(pi,pi+1)f(x)).\Delta = \sum^{n}_{i=1} \left(\sup_{x \in (p_{i},p_{i+1})} f(x) - \sup_{x \in (p_{i},p_{i+1})} f(x) \right).

By definition of supremum and infimum,

i[1n],(supx(pi,pi+1)f(x)infx(pi,pi+1)f(x))0; \forall i \in [1\dots n],\left(\sup_{x \in (p_{i},p_{i+1})} f(x) - \inf_{x \in (p_{i},p_{i+1})} f(x)\right) \geq 0;

therefore,

Δ0    U(f,P)L(f,P)0    U(f,P)L(f,P)    L(f,P)U(f,P).\Delta \geq 0 \implies \mathcal{U}(f,P) - \mathcal{L}(f,P) \geq 0 \implies \mathcal{U}(f,P) \geq \mathcal{L}(f,P) \implies \mathcal{L}(f,P) \leq \mathcal{U}(f,P). \square

[!Note] “Forcing Equality”> If we prove there exists LU\mathcal{L} \geq \mathcal{U}, then the equality L=U\mathcal{L} = \mathcal{U} is forced.

Darboux Integral

Def 9: Let P\mathcal{P} be the collection of partitions on [a,b][a,b] and f:[a,b]Rf: [a,b] \to \mathbb{R}. The lower (upper) Darboux integral, L(f)\mathcal{L}(f) (U(f)\mathcal{U}(f)) is

L(f)=supPPL(f,P)(U(f)=infPPU(f,P))\begin{gather} \mathcal{L}(f) = \sup_{P \in \mathcal{P}} \mathcal{L}(f,P) \\ \left( \mathcal{U}(f) = \inf_{P \in \mathcal{P}} \mathcal{U}(f,P) \right) \end{gather}

[!Note] The idea comes form the Refinement Inequality Theorem. We’re basically “taking the limit” here to get to the most optimal sum.

Def 10: If L(f)=U(f)\mathcal{L}(f) = \mathcal{U}(f), then the Darboux integral exists and is equal to both L(f)\mathcal{L}(f) and U(f)\mathcal{U}(f).

Integral Comparison Theorem

Thm 11: L(f)U(f)\mathcal{L}(f) \leq \mathcal{U}(f).

Let PPP \in \mathcal{P}. Since U(f,P)\mathcal{U}(f,P) is an upper bound of {L(f,Q):QP}\{ \mathcal{L}(f,Q) : Q \in \mathcal{P} \}, U(f,P)L(f)\mathcal{U}(f,P) \geq \mathcal{L}(f) (by Upper-Lower Sum Comparison. Since PP is arbitrary, L(f)\mathcal{L}(f) is a lower bound of {U(f,Q):QP}\{ \mathcal{U}(f,Q) : Q \in \mathcal{P} \} (by Upper-Lower Sum Comparison), so L(f)U(f)\mathcal{L}(f) \leq \mathcal{U}(f).

[!Note] Theorem 11, combined with the theorem 8, is basically the same the following lemma: AB    supAinfBA \leq B \implies \sup A \leq \inf B

Forcing Equality (Important Corollary)
U(f)L(f,P)    U(f)=L(f)\mathcal{U}(f) \leq \mathcal{L}(f,P) \implies \mathcal{U}(f) = \mathcal{L}(f)

Proof of the corollary:

By definition of Lower Darboux Integral, L(f,P)L(f)\mathcal{L}(f,P) \leq \mathcal{L}(f), then

U(f)L(f,P)    U(f)L(P)\mathcal{U}(f) \leq \mathcal{L}(f,P) \implies \mathcal{U}(f) \leq \mathcal{L}(P)

By Integral Comparison Theorem, L(f)U(f)\mathcal{L}(f) \leq \mathcal{U}(f), hence

{L(f)U(f)U(f)L(P)    U(f)=L(P).\begin{cases} \mathcal{L}(f) \leq \mathcal{U}(f) \\ \mathcal{U}(f) \leq \mathcal{L}(P) \end{cases} \implies \mathcal{U}(f) = \mathcal{L}(P). \square

Darboux Integrable Theorem

Thm 12: Let f:[a,b]Rf: [a,b] \to \mathbb{R} be continuous, then ff is Darboux integrable.

[!Note] From continuity on a closed interval, necessary (for the proof) uniform continuity and boundness conditions are implied.

Let ε>0\varepsilon > 0, then by definition of continuity δ>0\exists \delta > 0 such that

st<δ    f(s)f(t)<ε.|s-t| < \delta \implies |f(s) - f(t)| < \varepsilon.

Let nn be such that ban<δ\frac{b-a}{n} < \delta, then let partition

P={iban+a:i{0,,n}},P = \left\{ i\frac{b-a}{n} + a: i \in \{ 0,\dots,n \} \right\},

[!Note] PP gives us the values of xx of columns equal in distance across [a,b][a,b], i.e. the columns the good-old Reinman integral would split the sum onto.

then

U(f)L(f)U(f,P)L(f,P)=k=1n(ban)(SkIk)=n(ban)(SkIk)n(ban)ε=ε(ba),\begin{gather} \mathcal{U}(f) - \mathcal{L}(f) \leq \mathcal{U}(f,P) - \mathcal{L}(f,P) = \sum^{n}_{k=1} \left(\frac{b-a}{n}\right) (S_{k} - I_{k}) \leq \\ = n \left(\frac{b-a}{n}\right)(S_{k} - I_{k}) \leq n \left(\frac{b-a}{n}\right) \varepsilon = \varepsilon (b-a), \end{gather}

where Sk=supx(pk,pk+1)f(x)S_{k} = \sup_{x \in (p_{k},p_{k+1})} f(x), Ik=infx(pk,pk+1)f(x)I_{k} = \inf_{x \in (p_{k},p_{k+1})} f(x). Since ε\varepsilon is multiplied by a constant expression (ba)(b-a), it follows

U(f)L(f)ε(ba)    U(f)L(f)ε.\mathcal{U}(f) - \mathcal{L}(f) \leq \varepsilon (b-a) \implies \mathcal{U}(f) - \mathcal{L}(f) \leq \varepsilon. \square

[!Question]- Why is U(f)L(f)ε\mathcal{U}(f) - \mathcal{L}(f) \leq \varepsilon a sufficient condition for Darboux Integrability? It is a pretty important theorem.

Let U(f)L(f)ε\mathcal{U}(f) - \mathcal{L}(f) \leq \varepsilon. By Integral Comparison Theorem, it is sufficient to prove U(f)L(f)\mathcal{U}(f) \leq \mathcal{L}(f) in order to show that Darboux integral exists.

For the sake of contradiction, assume that U(f)≰L(f)\mathcal{U}(f) \not\leq \mathcal{L}(f), then m>0\exists m >0 such that

U(f)L(f)=m\mathcal{U}(f) - \mathcal{L}(f) = m

However since ε\varepsilon is arbitrary, let ε=m2\varepsilon = \frac{m}{2}, therefore

U(f)L(f)m2.\mathcal{U}(f) - \mathcal{L}(f) \leq \frac{m}{2}.

This is a contradiction since mm cannot be less than or equal than m2\frac{m}{2}; as such, Darboux integral exists.

You can also read about it here: Condition for Darboux Integrability - ProofWiki.

%% Since ε\varepsilon is arbitrary, by Refinement Inequality Theorem P\exists P such that

U(f)L(f)+εL(f,P)\mathcal{U}(f) \leq \mathcal{L}(f) + \varepsilon \leq \mathcal{L}(f,P)

which by the Forcing Equality Corollary to Integral Comparison Theorem implies that U(f)=L(f)\mathcal{U}(f) = \mathcal{L}(f) and Darboux integral exists. \square %%

[!Note]

U(f,P)L(f,P)=k=1n(pk+1pk)supx(pk,pk+1)f(x)k=1n(pk+1pk)infx(pk,pk+1)f(x)=k=1n(pk+1pk)(SkIk)\begin{align} \mathcal{U}(f,P) - \mathcal{L}(f,P) &= \sum_{k=1}^{n} (p_{k+1} - p_{k}) \sup_{x \in (p_{k},p_{k+1})} f(x) - \sum_{k=1}^{n} (p_{k+1} -p_{k}) \inf_{x \in (p_{k},p_{k+1})} f(x) \\ &= \sum^{n}_{k=1} (p_{k+1}-p_{k})(S_{k}-I_{k}) \end{align}

From definition of PP, it follows that pk=(k1)ban+ap_{k} = (k-1) \frac{b-a}{n} + a, so pk+1pk=banp_{k+1} - p_{k} = \frac{b-a}{n}, so

=k=1n(ban)(SkIk)= \sum^{n}_{k=1} \left(\frac{b-a}{n}\right) (S_{k} - I_{k})

[!Question]- Why is (SkIk)ε(S_{k} - I_{k}) \leq \varepsilon?

Let k[1n]k \in [1\dots n], recall ban<δ\frac{b-a}{n} < \delta, then

SkIk=supx((k1)ban+a,kban+a)f(x)infx((k1)ban+a,kban+a)f(x)\begin{align} S_{k} - I_{k} &= \sup_{x \in ((k-1) \frac{b-a}{n} + a,k \frac{b-a}{n} + a)} f(x) - \inf_{x \in ((k-1) \frac{b-a}{n} + a,k \frac{b-a}{n} + a)} f(x) \end{align}

Let s,t((k1)ban+a,kban+a)s,t \in ((k-1) \frac{b-a}{n} + a,k \frac{b-a}{n} + a), then

st<kban+a((k1)ban+a)=ban<δ.\begin{align} |s-t| &< \left|k \frac{b-a}{n} + a - \left((k-1) \frac{b-a}{n} + a\right)\right| \\ &= \left|\frac{b-a}{n}\right| \\ &< \delta. \end{align}

(the worst-case scenario for st|s-t| is still less than δ\delta). By definition,

st<δ    f(s)f(t)<ε    (*)SkIk<ε|s-t| < \delta \implies |f(s)-f(t)| < \varepsilon \stackrel{\text{(*)}}{\implies} |S_{k} - I_{k}| < \varepsilon

()(*): Since s,t\forall s,t, f(s)f(t)<ε|f(s) - f(t)| < \varepsilon and Sk,Ik{f(s):s},{f(t):t}S_{k},I_{k} \in \{ f(s) : s\}, \{ f(t) : t\}.

Finally, from the definition of supremum and infimum SkIkS_{k} \geq I_{k}, hence

SkIk<ε    SkIk<ε.|S_{k} - I_{k}| < \varepsilon \implies S_{k} - I_{k} < \varepsilon. \square

[!Question]- Why is U(f)L(f)U(f,P)L(f,P)\mathcal{U}(f) - \mathcal{L}(f) \leq \mathcal{U}(f,P) - \mathcal{L}(f,P)?

Intuitively, as we refine the sums, L\mathcal{L} gets larger and U\mathcal{U} gets smaller (since L\mathcal{L} undershoots and U\mathcal{U} overshoots the sum), so their difference gets smaller, “the window shrinks.”

Formal Proof:

Lemma 12.1.1: For any A,A1,B,B1RA,A_{1},B,B_{1} \in \mathbb{R}, (AA1)(BB1)    (A+B)(A1+B1)(A \leq A_{1}) \land (B \leq B_{1}) \implies (A + B) \leq (A_{1} + B_{1}).

Intuitively, if you have of length AA and BB, where segment AA is smaller than some segment A1A_{1} and segment BB is smaller than segment B1B_{1}. If you put AA and BB side by side and compare them to A1A_{1} and B1B_{1} side by side, then the length of ABAB will be smaller than the length of A1B1A_{1}B_{1}.

Since C,C1R\forall C,C_{1} \in \mathbb{R}

CC1    mR0:C+m=C1,C \leq C_{1} \iff \exists m \in \mathbb{R}_{\geq 0} : C + m = C_{1},
{AA1BB1    {m0:A+m=A1m10:B+m1=B1    (A+B)+(m+m1)=A1+B1.\begin{cases} A \leq A_{1} \\ B \leq B_{1} \end{cases} \iff \begin{cases} \exists m\geq0 : A + m = A_{1} \\ \exists m_{1}\geq0 : B + m_{1} = B_{1} \end{cases} \implies (A+B) + (m + m_{1}) = A_{1} + B_{1}.

Since (m+m1)R0(m + m_{1}) \in \mathbb{R}_{\geq 0},

A+BA1+B1.A + B \leq A_{1} + B_{1}. \square

Lemma 12.1.2: For any A,BRA,B \in \mathbb{R}, AB    ABA \leq B \iff -A \geq -B.

Since C,C1R\forall C,C_{1} \in \mathbb{R}

CC1    mR0:C+m=C1,CC1    mR0:C=C1+m,\begin{gather} C \leq C_{1} \iff \exists m \in \mathbb{R}_{\geq 0} : C + m = C_{1}, \\ C \geq C_{1} \iff \exists m \in \mathbb{R}_{\geq 0} : C = C_{1} + m, \end{gather}
AB    mR0:A+m=B    mR0:A=B+m    AB.A \leq B \iff \exists m \in \mathbb{R}_{\geq 0} : A + m = B \iff \exists m \in \mathbb{R}_{\geq 0} : -A = -B + m \iff -A \geq -B. \square

Lemma 12.1: U(f)L(f)U(f,P)L(f,P)\mathcal{U}(f) - \mathcal{L}(f) \leq \mathcal{U}(f,P) - \mathcal{L}(f,P).

By definition of Darboux Integral, supremum and infimum, for f:[a,b]Rf:[a,b] \to \mathbb{R} and all partitions PP,

{L(f)L(f,P)U(f)U(f,P)    \begin{cases} \mathcal{L}(f) \geq \mathcal{L}(f,P) \\ \mathcal{U}(f) \leq \mathcal{U}(f,P) \end{cases} \implies

By Lemma 12.1.2,

    {L(f)L(f,P)U(f)U(f,P)    \implies \begin{cases} -\mathcal{L}(f) \leq -\mathcal{L}(f,P) \\ \mathcal{U}(f) \leq \mathcal{U}(f,P) \end{cases} \implies

By Lemma 12.1.1,

    U(f)L(f)U(f,P)L(f,P).\implies \mathcal{U}(f) - \mathcal{L}(f) \leq \mathcal{U}(f,P) - \mathcal{L}(f,P). \square

Non-Integrability of Indicator Functions

Thm 13: f(x)={x=1xQx=0x∉Qf(x) = \begin{cases} x = 1 & x \in \mathbb{Q} \\ x = 0 & x \not\in \mathbb{Q}\end{cases} is not Darboux-integrable in R\mathbb{R}.

Without formality, due to the fact that rationals and irrationals are dense in reals, in every partition PP, L(f,P)=0\mathcal{L}(f,P) = 0 and U(f,P)=1\mathcal{U}(f,P) = 1; as such, the Darboux integral does not exist, since L(f)U(f)\mathcal{L}(f) \neq \mathcal{U}(f).


[!abstract] References