Introduction to Darboux Integral Published: 2024-05-17
Partition Def 1: Let a < b a < b a < b . A set P ⊆ [ a , b ] P \subseteq [a,b] P ⊆ [ a , b ] is a partition of [ a , b ] [a,b] [ a , b ] if ∣ P ∣ ∈ N |P| \in \mathbb{N} ∣ P ∣ ∈ N .
Refinement Def 2: Let P P P and P ′ P' P ′ be partitions of [ a , b ] [a,b] [ a , b ] , then P ′ P' P ′ is refinement of P P P if P ⊆ P ′ P \subseteq P' P ⊆ P ′ .
Lower Darboux Sum Def 3: For a partition P P P of [ a , b ] [a,b] [ a , b ] and ∣ P ∣ = n + 1 |P| = n + 1 ∣ P ∣ = n + 1 , the lower Darboux Sum of f : [ a , b ] → R f: [a,b] \to \mathbb{R} f : [ a , b ] → R over P P P , L ( f , P ) \mathcal{L}(f,P) L ( f , P ) , is
∑ i = 1 n ( p i + 1 − p i ) inf x ∈ ( p i , p i + 1 ) f ( x ) \sum^{n}_{i=1} (p_{i+1} - p_{i}) \inf_{x \in (p_{i},p_{i+1})} f(x) i = 1 ∑ n ( p i + 1 − p i ) x ∈ ( p i , p i + 1 ) inf f ( x ) where ∃ ! p n ∈ P : p 1 ≤ p 2 ≤ ⋯ ≤ p n + 1 \exists!p_{n} \in\ P: p_{1} \leq p_{2} \leq \dots \leq p_{n+1} ∃ ! p n ∈ P : p 1 ≤ p 2 ≤ ⋯ ≤ p n + 1 .
Upper Darboux Sum Def 4: For a partition P P P of [ a , b ] [a,b] [ a , b ] and ∣ P ∣ = n + 1 |P| = n + 1 ∣ P ∣ = n + 1 , the upper Darboux Sum of f : [ a , b ] → R f: [a,b] \to \mathbb{R} f : [ a , b ] → R over P P P , U ( f , P ) \mathcal{U}(f,P) U ( f , P ) , is
∑ i = 1 n ( p i + 1 − p i ) sup x ∈ ( p i , p i + 1 ) f ( x ) \sum^{n}_{i=1} (p_{i+1} - p_{i}) \sup_{x \in (p_{i},p_{i+1})} f(x) i = 1 ∑ n ( p i + 1 − p i ) x ∈ ( p i , p i + 1 ) sup f ( x ) where ∃ ! p n ∈ P : p 1 ≤ p 2 ≤ ⋯ ≤ p n + 1 \exists!p_{n} \in P: p_{1} \leq p_{2} \leq \dots \leq p_{n+1} ∃ ! p n ∈ P : p 1 ≤ p 2 ≤ ⋯ ≤ p n + 1 .
Refinement Inequality Theorem Lemma 5: For an ordered set S S S and its subset B ⊆ S B \subseteq S B ⊆ S , inf B ≥ inf S \inf B \geq \inf S inf B ≥ inf S and sup B ≤ sup S \sup B \leq \sup S sup B ≤ sup S .
Lemma 6: For f : [ a , b ] → R f:[a,b] \to R f : [ a , b ] → R , given a partition P P P of [ a , b ] [a,b] [ a , b ] and its refinement P ′ = P ∪ { c } P' = P \cup \{ c \} P ′ = P ∪ { c } , L ( f , P ) ≤ L ( f , P ’ ) \mathcal{L}(f,P) \leq \mathcal{L}(f,P’) L ( f , P ) ≤ L ( f , P ’ ) and U ( f , P ) ≥ U ( f , P ′ ) \mathcal{U}(f,P) \geq \mathcal{U}(f,P') U ( f , P ) ≥ U ( f , P ′ ) .
Let p n − 1 , p n , p n + 1 p_{n-1},p_{n},p_{n+1} p n − 1 , p n , p n + 1 where p n = c p_{n} = c p n = c , then
L ( f , P ′ ) − L ( f , P ) = ( p n + 1 − p n ) inf x ∈ ( p n , p n + 1 ) f ( x ) + ( p n − p n − 1 ) inf x ∈ ( p n − 1 , p n ) f ( x ) − ( p n + 1 − p n − 1 ) inf x ∈ ( p n − 1 , p n + 1 ) f ( x ) \begin{align}
\mathcal{L}(f,P') - \mathcal{L}(f,P) &= (p_{n+1} - p_{n}) \inf_{x \in (p_{n}, p_{n+1})} f(x) \\
&+ (p_{n} - p_{n-1}) \inf_{x \in (p_{n-1}, p_{n})} f(x) \\
&- (p_{n+1} - p_{n-1}) \inf_{x \in (p_{n-1}, p_{n+1})} f(x)
\end{align} L ( f , P ′ ) − L ( f , P ) = ( p n + 1 − p n ) x ∈ ( p n , p n + 1 ) inf f ( x ) + ( p n − p n − 1 ) x ∈ ( p n − 1 , p n ) inf f ( x ) − ( p n + 1 − p n − 1 ) x ∈ ( p n − 1 , p n + 1 ) inf f ( x ) For simplicity, we assume i 0 = inf x ∈ ( p n − 1 , p n + 1 ) f ( x ) i_{0} = \inf_{x \in (p_{n-1}, p_{n+1})} f(x) i 0 = inf x ∈ ( p n − 1 , p n + 1 ) f ( x ) , i 1 = inf x ∈ ( p n , p n + 1 ) f ( x ) i_{1} = \inf_{x \in (p_{n}, p_{n+1})} f(x) i 1 = inf x ∈ ( p n , p n + 1 ) f ( x ) and i 2 = inf x ∈ ( p n − 1 , p n ) f ( x ) i_{2} = \inf_{x \in (p_{n-1}, p_{n})} f(x) i 2 = inf x ∈ ( p n − 1 , p n ) f ( x ) , then
Δ L = ( p n + 1 − p n ) i 1 + ( p n − p n − 1 ) i 2 − ( p n + 1 − p n − 1 ) i 0 = p n + 1 i 1 − p n i 1 + p n i 2 − p n − 1 i 2 − p n + 1 i 0 + p n − 1 i 0 = p n − 1 ( i 0 − i 2 ) + p n ( i 2 − i 1 ) + p n + 1 ( i 1 − i 0 ) \begin{align}
\Delta \mathcal{L} &= (p_{n+1} - p_{n})i_{1} + (p_{n} - p_{n-1})i_{2} - (p_{n+1} - p_{n-1})i_{0} \\
&= p_{n+1}i_{1} - p_{n}i_{1} + p_{n}i_{2} - p_{n-1}i_{2} - p_{n+1}i_{0} + p_{n-1}i_{0} \\
&= p_{n-1}(i_{0}-i_{2}) + p_{n}(i_{2}-i_{1}) + p_{n+1}(i_{1}-i_{0})
\end{align} Δ L = ( p n + 1 − p n ) i 1 + ( p n − p n − 1 ) i 2 − ( p n + 1 − p n − 1 ) i 0 = p n + 1 i 1 − p n i 1 + p n i 2 − p n − 1 i 2 − p n + 1 i 0 + p n − 1 i 0 = p n − 1 ( i 0 − i 2 ) + p n ( i 2 − i 1 ) + p n + 1 ( i 1 − i 0 ) Without the loss of generality, assume that i 1 = i 0 i_{1} = i_{0} i 1 = i 0 (since ( p n − 1 , p n ) ∪ ( p n , p n + 1 ) = ( p n − 1 , p n + 1 ) (p_{n-1},p_{n}) \cup (p_{n},p_{n+1}) = (p_{n-1},p_{n+1}) ( p n − 1 , p n ) ∪ ( p n , p n + 1 ) = ( p n − 1 , p n + 1 ) implies that i 0 i_{0} i 0 is contained in one of those two intervals), then
Δ L = p n − 1 ( i 0 − i 2 ) + p n ( i 2 − i 0 ) = ( p n − p n − 1 ) ( i 2 − i 0 ) \begin{align}
\Delta \mathcal{L} = p_{n-1} (i_{0} - i_{2}) + p_{n}(i_{2} - i_{0}) = (p_{n}-p_{n-1})(i_{2}-i_{0})
\end{align} Δ L = p n − 1 ( i 0 − i 2 ) + p n ( i 2 − i 0 ) = ( p n − p n − 1 ) ( i 2 − i 0 ) By Lemma 5, i 2 − i 0 ≥ 0 i_{2} -i_{0} \geq 0 i 2 − i 0 ≥ 0 and by definition p n − p n − 1 > 0 p_{n}-p_{n-1}> 0 p n − p n − 1 > 0 ; therefore,
Δ L ≥ 0 ⟹ L ( f , P ′ ) − L ( f , P ) ≥ 0 ⟹ L ( f , P ′ ) ≥ L ( f , P ) . □ \Delta \mathcal{L} \geq 0 \implies \mathcal{L}(f,P') - \mathcal{L}(f,P) \geq 0 \implies \mathcal{L}(f,P') \geq \mathcal{L}(f,P). \square Δ L ≥ 0 ⟹ L ( f , P ′ ) − L ( f , P ) ≥ 0 ⟹ L ( f , P ′ ) ≥ L ( f , P ) . □ Equivalently, it can be shown that U ( f , P ′ ) ≤ U ( f , P ) \mathcal{U}(f,P') \leq \mathcal{U}(f,P) U ( f , P ′ ) ≤ U ( f , P ) .
Theorem 7: Let f : [ a , b ] → R f: [a,b] \to \mathbb{R} f : [ a , b ] → R and P P P be a partition of [ a , b ] [a,b] [ a , b ] . If P ′ P' P ′ is a refinement of P P P , then L ( f , P ) ≤ L ( f , P ′ ) \mathcal{L}(f,P) \leq \mathcal{L}(f,P') L ( f , P ) ≤ L ( f , P ′ ) and U ( f , P ) ≥ U ( f , P ′ ) \mathcal{U}(f,P) \geq \mathcal{U}(f,P') U ( f , P ) ≥ U ( f , P ′ )
Theorem 7 can be proven by induction of lemma 6.
Upper-Lower Sum Comparison Thm 8: Let f : [ a , b ] → R f: [a,b] \to \mathbb{R} f : [ a , b ] → R , P P P and P ′ P' P ′ be arbitrary partitions of [ a , b ] [a,b] [ a , b ] , then
L ( f , P ) ≤ U ( f , P ′ ) \mathcal{L}(f,P) \leq \mathcal{U}(f,P') L ( f , P ) ≤ U ( f , P ′ )
Let P ′ ′ = P ∪ P ′ P'' = P \cup P' P ′′ = P ∪ P ′ , then P , P ′ P,P' P , P ′ are refinements of P ′ ′ P'' P ′′ , so by Refinement Inequality Theorem ,
L ( f , P ) ≤ L ( f , P ′ ′ ) ≤ U ( f , P ′ ′ ) ≤ U ( f , P ) . □ \mathcal{L}(f,P) \leq \mathcal{L}(f,P'') \leq \mathcal{U}(f,P'') \leq \mathcal{U}(f, P). \square L ( f , P ) ≤ L ( f , P ′′ ) ≤ U ( f , P ′′ ) ≤ U ( f , P ) . □ [!Question]- Why is L ( f , P ′ ′ ) ≤ U ( f , P ′ ′ ) \mathcal{L}(f,P'') \leq \mathcal{U}(f,P'') L ( f , P ′′ ) ≤ U ( f , P ′′ ) .
Intuitively, since upper sum always overshoots and lower sum over undershoots the actual integral, upper sum will always be bigger or equal to the lower sum; however, if you want a rigorous proof, here it is:
For f : [ a , b ] → R f: [a,b] \to \mathbb{R} f : [ a , b ] → R and Partition P P P , we define
Δ = U ( f , P ) − L ( f , P ) , \Delta = \mathcal{U}(f,P) - \mathcal{L}(f,P), Δ = U ( f , P ) − L ( f , P ) , which, by definition of upper and lower Darboux sums is equal to
Δ = ∑ i = 1 n ( sup x ∈ ( p i , p i + 1 ) f ( x ) − sup x ∈ ( p i , p i + 1 ) f ( x ) ) . \Delta = \sum^{n}_{i=1} \left(\sup_{x \in (p_{i},p_{i+1})} f(x) - \sup_{x \in (p_{i},p_{i+1})} f(x) \right). Δ = i = 1 ∑ n ( x ∈ ( p i , p i + 1 ) sup f ( x ) − x ∈ ( p i , p i + 1 ) sup f ( x ) ) . By definition of supremum and infimum,
∀ i ∈ [ 1 … n ] , ( sup x ∈ ( p i , p i + 1 ) f ( x ) − inf x ∈ ( p i , p i + 1 ) f ( x ) ) ≥ 0 ; \forall i \in [1\dots n],\left(\sup_{x \in (p_{i},p_{i+1})} f(x) - \inf_{x \in (p_{i},p_{i+1})} f(x)\right) \geq 0; ∀ i ∈ [ 1 … n ] , ( x ∈ ( p i , p i + 1 ) sup f ( x ) − x ∈ ( p i , p i + 1 ) inf f ( x ) ) ≥ 0 ; therefore,
Δ ≥ 0 ⟹ U ( f , P ) − L ( f , P ) ≥ 0 ⟹ U ( f , P ) ≥ L ( f , P ) ⟹ L ( f , P ) ≤ U ( f , P ) . □ \Delta \geq 0 \implies \mathcal{U}(f,P) - \mathcal{L}(f,P) \geq 0 \implies \mathcal{U}(f,P) \geq \mathcal{L}(f,P) \implies \mathcal{L}(f,P) \leq \mathcal{U}(f,P). \square Δ ≥ 0 ⟹ U ( f , P ) − L ( f , P ) ≥ 0 ⟹ U ( f , P ) ≥ L ( f , P ) ⟹ L ( f , P ) ≤ U ( f , P ) . □ [!Note] “Forcing Equality”>
If we prove there exists L ≥ U \mathcal{L} \geq \mathcal{U} L ≥ U , then the equality L = U \mathcal{L} = \mathcal{U} L = U is forced.
Darboux Integral Def 9: Let P \mathcal{P} P be the collection of partitions on [ a , b ] [a,b] [ a , b ] and f : [ a , b ] → R f: [a,b] \to \mathbb{R} f : [ a , b ] → R . The lower (upper) Darboux integral, L ( f ) \mathcal{L}(f) L ( f ) (U ( f ) \mathcal{U}(f) U ( f ) ) is
L ( f ) = sup P ∈ P L ( f , P ) ( U ( f ) = inf P ∈ P U ( f , P ) ) \begin{gather}
\mathcal{L}(f) = \sup_{P \in \mathcal{P}} \mathcal{L}(f,P) \\
\left( \mathcal{U}(f) = \inf_{P \in \mathcal{P}} \mathcal{U}(f,P) \right)
\end{gather} L ( f ) = P ∈ P sup L ( f , P ) ( U ( f ) = P ∈ P inf U ( f , P ) ) [!Note]
The idea comes form the Refinement Inequality Theorem . We’re basically “taking the limit” here to get to the most optimal sum.
Def 10: If L ( f ) = U ( f ) \mathcal{L}(f) = \mathcal{U}(f) L ( f ) = U ( f ) , then the Darboux integral exists and is equal to both L ( f ) \mathcal{L}(f) L ( f ) and U ( f ) \mathcal{U}(f) U ( f ) .
Integral Comparison Theorem Thm 11: L ( f ) ≤ U ( f ) \mathcal{L}(f) \leq \mathcal{U}(f) L ( f ) ≤ U ( f ) .
Let P ∈ P P \in \mathcal{P} P ∈ P . Since U ( f , P ) \mathcal{U}(f,P) U ( f , P ) is an upper bound of { L ( f , Q ) : Q ∈ P } \{ \mathcal{L}(f,Q) : Q \in \mathcal{P} \} { L ( f , Q ) : Q ∈ P } , U ( f , P ) ≥ L ( f ) \mathcal{U}(f,P) \geq \mathcal{L}(f) U ( f , P ) ≥ L ( f ) (by Upper-Lower Sum Comparison . Since P P P is arbitrary, L ( f ) \mathcal{L}(f) L ( f ) is a lower bound of { U ( f , Q ) : Q ∈ P } \{ \mathcal{U}(f,Q) : Q \in \mathcal{P} \} { U ( f , Q ) : Q ∈ P } (by Upper-Lower Sum Comparison ), so L ( f ) ≤ U ( f ) \mathcal{L}(f) \leq \mathcal{U}(f) L ( f ) ≤ U ( f ) .
[!Note]
Theorem 11, combined with the theorem 8, is basically the same the following lemma:
A ≤ B ⟹ sup A ≤ inf B A \leq B \implies \sup A \leq \inf B A ≤ B ⟹ sup A ≤ inf B
Forcing Equality (Important Corollary) U ( f ) ≤ L ( f , P ) ⟹ U ( f ) = L ( f ) \mathcal{U}(f) \leq \mathcal{L}(f,P) \implies \mathcal{U}(f) = \mathcal{L}(f) U ( f ) ≤ L ( f , P ) ⟹ U ( f ) = L ( f ) Proof of the corollary:
By definition of Lower Darboux Integral , L ( f , P ) ≤ L ( f ) \mathcal{L}(f,P) \leq \mathcal{L}(f) L ( f , P ) ≤ L ( f ) , then
U ( f ) ≤ L ( f , P ) ⟹ U ( f ) ≤ L ( P ) \mathcal{U}(f) \leq \mathcal{L}(f,P) \implies \mathcal{U}(f) \leq \mathcal{L}(P) U ( f ) ≤ L ( f , P ) ⟹ U ( f ) ≤ L ( P ) By Integral Comparison Theorem , L ( f ) ≤ U ( f ) \mathcal{L}(f) \leq \mathcal{U}(f) L ( f ) ≤ U ( f ) , hence
{ L ( f ) ≤ U ( f ) U ( f ) ≤ L ( P ) ⟹ U ( f ) = L ( P ) . □ \begin{cases}
\mathcal{L}(f) \leq \mathcal{U}(f) \\
\mathcal{U}(f) \leq \mathcal{L}(P)
\end{cases} \implies \mathcal{U}(f) = \mathcal{L}(P). \square { L ( f ) ≤ U ( f ) U ( f ) ≤ L ( P ) ⟹ U ( f ) = L ( P ) . □ Darboux Integrable Theorem Thm 12: Let f : [ a , b ] → R f: [a,b] \to \mathbb{R} f : [ a , b ] → R be continuous, then f f f is Darboux integrable .
[!Note]
From continuity on a closed interval, necessary (for the proof) uniform continuity and boundness conditions are implied.
Let ε > 0 \varepsilon > 0 ε > 0 , then by definition of continuity ∃ δ > 0 \exists \delta > 0 ∃ δ > 0 such that
∣ s − t ∣ < δ ⟹ ∣ f ( s ) − f ( t ) ∣ < ε . |s-t| < \delta \implies |f(s) - f(t)| < \varepsilon. ∣ s − t ∣ < δ ⟹ ∣ f ( s ) − f ( t ) ∣ < ε . Let n n n be such that b − a n < δ \frac{b-a}{n} < \delta n b − a < δ , then let partition
P = { i b − a n + a : i ∈ { 0 , … , n } } , P = \left\{ i\frac{b-a}{n} + a: i \in \{ 0,\dots,n \} \right\}, P = { i n b − a + a : i ∈ { 0 , … , n } } , [!Note]
P P P gives us the values of x x x of columns equal in distance across [ a , b ] [a,b] [ a , b ] , i.e. the columns the good-old Reinman integral would split the sum onto.
then
U ( f ) − L ( f ) ≤ U ( f , P ) − L ( f , P ) = ∑ k = 1 n ( b − a n ) ( S k − I k ) ≤ = n ( b − a n ) ( S k − I k ) ≤ n ( b − a n ) ε = ε ( b − a ) , \begin{gather}
\mathcal{U}(f) - \mathcal{L}(f) \leq \mathcal{U}(f,P) - \mathcal{L}(f,P) = \sum^{n}_{k=1} \left(\frac{b-a}{n}\right) (S_{k} - I_{k}) \leq \\
= n \left(\frac{b-a}{n}\right)(S_{k} - I_{k}) \leq n \left(\frac{b-a}{n}\right) \varepsilon = \varepsilon (b-a),
\end{gather} U ( f ) − L ( f ) ≤ U ( f , P ) − L ( f , P ) = k = 1 ∑ n ( n b − a ) ( S k − I k ) ≤ = n ( n b − a ) ( S k − I k ) ≤ n ( n b − a ) ε = ε ( b − a ) , where S k = sup x ∈ ( p k , p k + 1 ) f ( x ) S_{k} = \sup_{x \in (p_{k},p_{k+1})} f(x) S k = sup x ∈ ( p k , p k + 1 ) f ( x ) , I k = inf x ∈ ( p k , p k + 1 ) f ( x ) I_{k} = \inf_{x \in (p_{k},p_{k+1})} f(x) I k = inf x ∈ ( p k , p k + 1 ) f ( x ) . Since ε \varepsilon ε is multiplied by a constant expression ( b − a ) (b-a) ( b − a ) , it follows
U ( f ) − L ( f ) ≤ ε ( b − a ) ⟹ U ( f ) − L ( f ) ≤ ε . □ \mathcal{U}(f) - \mathcal{L}(f) \leq \varepsilon (b-a) \implies \mathcal{U}(f) - \mathcal{L}(f) \leq \varepsilon. \square U ( f ) − L ( f ) ≤ ε ( b − a ) ⟹ U ( f ) − L ( f ) ≤ ε . □ [!Question]- Why is U ( f ) − L ( f ) ≤ ε \mathcal{U}(f) - \mathcal{L}(f) \leq \varepsilon U ( f ) − L ( f ) ≤ ε a sufficient condition for Darboux Integrability?
It is a pretty important theorem.
Let U ( f ) − L ( f ) ≤ ε \mathcal{U}(f) - \mathcal{L}(f) \leq \varepsilon U ( f ) − L ( f ) ≤ ε . By Integral Comparison Theorem , it is sufficient to prove U ( f ) ≤ L ( f ) \mathcal{U}(f) \leq \mathcal{L}(f) U ( f ) ≤ L ( f ) in order to show that Darboux integral exists.
For the sake of contradiction, assume that U ( f ) ≰ L ( f ) \mathcal{U}(f) \not\leq \mathcal{L}(f) U ( f ) ≤ L ( f ) , then ∃ m > 0 \exists m >0 ∃ m > 0 such that
U ( f ) − L ( f ) = m \mathcal{U}(f) - \mathcal{L}(f) = m U ( f ) − L ( f ) = m However since ε \varepsilon ε is arbitrary, let ε = m 2 \varepsilon = \frac{m}{2} ε = 2 m , therefore
U ( f ) − L ( f ) ≤ m 2 . \mathcal{U}(f) - \mathcal{L}(f) \leq \frac{m}{2}. U ( f ) − L ( f ) ≤ 2 m . This is a contradiction since m m m cannot be less than or equal than m 2 \frac{m}{2} 2 m ; as such, Darboux integral exists.
You can also read about it here: Condition for Darboux Integrability - ProofWiki .
%%
Since ε \varepsilon ε is arbitrary, by Refinement Inequality Theorem ∃ P \exists P ∃ P such that
U ( f ) ≤ L ( f ) + ε ≤ L ( f , P ) \mathcal{U}(f) \leq \mathcal{L}(f) + \varepsilon \leq \mathcal{L}(f,P) U ( f ) ≤ L ( f ) + ε ≤ L ( f , P ) which by the Forcing Equality Corollary to Integral Comparison Theorem implies that U ( f ) = L ( f ) \mathcal{U}(f) = \mathcal{L}(f) U ( f ) = L ( f ) and Darboux integral exists. □ \square □
%%
[!Note]
U ( f , P ) − L ( f , P ) = ∑ k = 1 n ( p k + 1 − p k ) sup x ∈ ( p k , p k + 1 ) f ( x ) − ∑ k = 1 n ( p k + 1 − p k ) inf x ∈ ( p k , p k + 1 ) f ( x ) = ∑ k = 1 n ( p k + 1 − p k ) ( S k − I k ) \begin{align}
\mathcal{U}(f,P) - \mathcal{L}(f,P) &= \sum_{k=1}^{n} (p_{k+1} - p_{k}) \sup_{x \in (p_{k},p_{k+1})} f(x) - \sum_{k=1}^{n} (p_{k+1} -p_{k}) \inf_{x \in (p_{k},p_{k+1})} f(x) \\
&= \sum^{n}_{k=1} (p_{k+1}-p_{k})(S_{k}-I_{k})
\end{align} U ( f , P ) − L ( f , P ) = k = 1 ∑ n ( p k + 1 − p k ) x ∈ ( p k , p k + 1 ) sup f ( x ) − k = 1 ∑ n ( p k + 1 − p k ) x ∈ ( p k , p k + 1 ) inf f ( x ) = k = 1 ∑ n ( p k + 1 − p k ) ( S k − I k ) From definition of P P P , it follows that p k = ( k − 1 ) b − a n + a p_{k} = (k-1) \frac{b-a}{n} + a p k = ( k − 1 ) n b − a + a , so p k + 1 − p k = b − a n p_{k+1} - p_{k} = \frac{b-a}{n} p k + 1 − p k = n b − a , so
= ∑ k = 1 n ( b − a n ) ( S k − I k ) = \sum^{n}_{k=1} \left(\frac{b-a}{n}\right) (S_{k} - I_{k}) = k = 1 ∑ n ( n b − a ) ( S k − I k ) [!Question]- Why is ( S k − I k ) ≤ ε (S_{k} - I_{k}) \leq \varepsilon ( S k − I k ) ≤ ε ?
Let k ∈ [ 1 … n ] k \in [1\dots n] k ∈ [ 1 … n ] , recall b − a n < δ \frac{b-a}{n} < \delta n b − a < δ , then
S k − I k = sup x ∈ ( ( k − 1 ) b − a n + a , k b − a n + a ) f ( x ) − inf x ∈ ( ( k − 1 ) b − a n + a , k b − a n + a ) f ( x ) \begin{align}
S_{k} - I_{k} &= \sup_{x \in ((k-1) \frac{b-a}{n} + a,k \frac{b-a}{n} + a)} f(x) - \inf_{x \in ((k-1) \frac{b-a}{n} + a,k \frac{b-a}{n} + a)} f(x)
\end{align} S k − I k = x ∈ (( k − 1 ) n b − a + a , k n b − a + a ) sup f ( x ) − x ∈ (( k − 1 ) n b − a + a , k n b − a + a ) inf f ( x ) Let s , t ∈ ( ( k − 1 ) b − a n + a , k b − a n + a ) s,t \in ((k-1) \frac{b-a}{n} + a,k \frac{b-a}{n} + a) s , t ∈ (( k − 1 ) n b − a + a , k n b − a + a ) , then
∣ s − t ∣ < ∣ k b − a n + a − ( ( k − 1 ) b − a n + a ) ∣ = ∣ b − a n ∣ < δ . \begin{align}
|s-t| &< \left|k \frac{b-a}{n} + a - \left((k-1) \frac{b-a}{n} + a\right)\right| \\
&= \left|\frac{b-a}{n}\right| \\
&< \delta.
\end{align} ∣ s − t ∣ < k n b − a + a − ( ( k − 1 ) n b − a + a ) = n b − a < δ . (the worst-case scenario for ∣ s − t ∣ |s-t| ∣ s − t ∣ is still less than δ \delta δ ). By definition,
∣ s − t ∣ < δ ⟹ ∣ f ( s ) − f ( t ) ∣ < ε ⟹ (*) ∣ S k − I k ∣ < ε |s-t| < \delta \implies |f(s)-f(t)| < \varepsilon \stackrel{\text{(*)}}{\implies} |S_{k} - I_{k}| < \varepsilon ∣ s − t ∣ < δ ⟹ ∣ f ( s ) − f ( t ) ∣ < ε ⟹ (*) ∣ S k − I k ∣ < ε ( ∗ ) (*) ( ∗ ) : Since ∀ s , t \forall s,t ∀ s , t , ∣ f ( s ) − f ( t ) ∣ < ε |f(s) - f(t)| < \varepsilon ∣ f ( s ) − f ( t ) ∣ < ε and S k , I k ∈ { f ( s ) : s } , { f ( t ) : t } S_{k},I_{k} \in \{ f(s) : s\}, \{ f(t) : t\} S k , I k ∈ { f ( s ) : s } , { f ( t ) : t } .
Finally, from the definition of supremum and infimum S k ≥ I k S_{k} \geq I_{k} S k ≥ I k , hence
∣ S k − I k ∣ < ε ⟹ S k − I k < ε . □ |S_{k} - I_{k}| < \varepsilon \implies S_{k} - I_{k} < \varepsilon. \square ∣ S k − I k ∣ < ε ⟹ S k − I k < ε . □ [!Question]- Why is U ( f ) − L ( f ) ≤ U ( f , P ) − L ( f , P ) \mathcal{U}(f) - \mathcal{L}(f) \leq \mathcal{U}(f,P) - \mathcal{L}(f,P) U ( f ) − L ( f ) ≤ U ( f , P ) − L ( f , P ) ?
Intuitively, as we refine the sums, L \mathcal{L} L gets larger and U \mathcal{U} U gets smaller (since L \mathcal{L} L undershoots and U \mathcal{U} U overshoots the sum), so their difference gets smaller, “the window shrinks.”
Formal Proof:
Lemma 12.1.1: For any A , A 1 , B , B 1 ∈ R A,A_{1},B,B_{1} \in \mathbb{R} A , A 1 , B , B 1 ∈ R , ( A ≤ A 1 ) ∧ ( B ≤ B 1 ) ⟹ ( A + B ) ≤ ( A 1 + B 1 ) (A \leq A_{1}) \land (B \leq B_{1}) \implies (A + B) \leq (A_{1} + B_{1}) ( A ≤ A 1 ) ∧ ( B ≤ B 1 ) ⟹ ( A + B ) ≤ ( A 1 + B 1 ) .
Intuitively, if you have of length A A A and B B B , where segment A A A is smaller than some segment A 1 A_{1} A 1 and segment B B B is smaller than segment B 1 B_{1} B 1 . If you put A A A and B B B side by side and compare them to A 1 A_{1} A 1 and B 1 B_{1} B 1 side by side, then the length of A B AB A B will be smaller than the length of A 1 B 1 A_{1}B_{1} A 1 B 1 .
Since ∀ C , C 1 ∈ R \forall C,C_{1} \in \mathbb{R} ∀ C , C 1 ∈ R
C ≤ C 1 ⟺ ∃ m ∈ R ≥ 0 : C + m = C 1 , C \leq C_{1} \iff \exists m \in \mathbb{R}_{\geq 0} : C + m = C_{1}, C ≤ C 1 ⟺ ∃ m ∈ R ≥ 0 : C + m = C 1 , { A ≤ A 1 B ≤ B 1 ⟺ { ∃ m ≥ 0 : A + m = A 1 ∃ m 1 ≥ 0 : B + m 1 = B 1 ⟹ ( A + B ) + ( m + m 1 ) = A 1 + B 1 . \begin{cases}
A \leq A_{1} \\
B \leq B_{1}
\end{cases} \iff \begin{cases}
\exists m\geq0 : A + m = A_{1} \\
\exists m_{1}\geq0 : B + m_{1} = B_{1}
\end{cases} \implies
(A+B) + (m + m_{1}) = A_{1} + B_{1}. { A ≤ A 1 B ≤ B 1 ⟺ { ∃ m ≥ 0 : A + m = A 1 ∃ m 1 ≥ 0 : B + m 1 = B 1 ⟹ ( A + B ) + ( m + m 1 ) = A 1 + B 1 . Since ( m + m 1 ) ∈ R ≥ 0 (m + m_{1}) \in \mathbb{R}_{\geq 0} ( m + m 1 ) ∈ R ≥ 0 ,
A + B ≤ A 1 + B 1 . □ A + B \leq A_{1} + B_{1}. \square A + B ≤ A 1 + B 1 . □ Lemma 12.1.2: For any A , B ∈ R A,B \in \mathbb{R} A , B ∈ R , A ≤ B ⟺ − A ≥ − B A \leq B \iff -A \geq -B A ≤ B ⟺ − A ≥ − B .
Since ∀ C , C 1 ∈ R \forall C,C_{1} \in \mathbb{R} ∀ C , C 1 ∈ R
C ≤ C 1 ⟺ ∃ m ∈ R ≥ 0 : C + m = C 1 , C ≥ C 1 ⟺ ∃ m ∈ R ≥ 0 : C = C 1 + m , \begin{gather}
C \leq C_{1} \iff \exists m \in \mathbb{R}_{\geq 0} : C + m = C_{1}, \\
C \geq C_{1} \iff \exists m \in \mathbb{R}_{\geq 0} : C = C_{1} + m,
\end{gather} C ≤ C 1 ⟺ ∃ m ∈ R ≥ 0 : C + m = C 1 , C ≥ C 1 ⟺ ∃ m ∈ R ≥ 0 : C = C 1 + m , A ≤ B ⟺ ∃ m ∈ R ≥ 0 : A + m = B ⟺ ∃ m ∈ R ≥ 0 : − A = − B + m ⟺ − A ≥ − B . □ A \leq B \iff \exists m \in \mathbb{R}_{\geq 0} : A + m = B \iff \exists m \in \mathbb{R}_{\geq 0} : -A = -B + m \iff -A \geq -B. \square A ≤ B ⟺ ∃ m ∈ R ≥ 0 : A + m = B ⟺ ∃ m ∈ R ≥ 0 : − A = − B + m ⟺ − A ≥ − B . □ Lemma 12.1: U ( f ) − L ( f ) ≤ U ( f , P ) − L ( f , P ) \mathcal{U}(f) - \mathcal{L}(f) \leq \mathcal{U}(f,P) - \mathcal{L}(f,P) U ( f ) − L ( f ) ≤ U ( f , P ) − L ( f , P ) .
By definition of Darboux Integral , supremum and infimum, for f : [ a , b ] → R f:[a,b] \to \mathbb{R} f : [ a , b ] → R and all partitions P P P ,
{ L ( f ) ≥ L ( f , P ) U ( f ) ≤ U ( f , P ) ⟹ \begin{cases}
\mathcal{L}(f) \geq \mathcal{L}(f,P) \\
\mathcal{U}(f) \leq \mathcal{U}(f,P)
\end{cases} \implies { L ( f ) ≥ L ( f , P ) U ( f ) ≤ U ( f , P ) ⟹ By Lemma 12.1.2,
⟹ { − L ( f ) ≤ − L ( f , P ) U ( f ) ≤ U ( f , P ) ⟹ \implies \begin{cases}
-\mathcal{L}(f) \leq -\mathcal{L}(f,P) \\
\mathcal{U}(f) \leq \mathcal{U}(f,P)
\end{cases} \implies ⟹ { − L ( f ) ≤ − L ( f , P ) U ( f ) ≤ U ( f , P ) ⟹ By Lemma 12.1.1,
⟹ U ( f ) − L ( f ) ≤ U ( f , P ) − L ( f , P ) . □ \implies \mathcal{U}(f) - \mathcal{L}(f) \leq \mathcal{U}(f,P) - \mathcal{L}(f,P). \square ⟹ U ( f ) − L ( f ) ≤ U ( f , P ) − L ( f , P ) . □ Non-Integrability of Indicator Functions Thm 13: f ( x ) = { x = 1 x ∈ Q x = 0 x ∉ Q f(x) = \begin{cases} x = 1 & x \in \mathbb{Q} \\ x = 0 & x \not\in \mathbb{Q}\end{cases} f ( x ) = { x = 1 x = 0 x ∈ Q x ∈ Q is not Darboux-integrable in R \mathbb{R} R .
Without formality, due to the fact that rationals and irrationals are dense in reals, in every partition P P P , L ( f , P ) = 0 \mathcal{L}(f,P) = 0 L ( f , P ) = 0 and U ( f , P ) = 1 \mathcal{U}(f,P) = 1 U ( f , P ) = 1 ; as such, the Darboux integral does not exist, since L ( f ) ≠ U ( f ) \mathcal{L}(f) \neq \mathcal{U}(f) L ( f ) = U ( f ) .
[!abstract] References